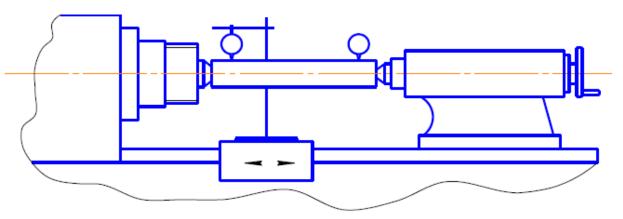


ПАРАМЕТРЫ ТОКАРНОГО СТАНКА



ПРОМЫШЛЕННАЯ МЕХАНИКА И МОНТАЖ -2025г

МЕТОДОЛОГИЯ и НОРМАТИВНЫЕ ДОКУМЕНТЫ

- 1. ГОСТ 230-1-2010 «Испытания станков. Часть 1. Методы измерения геометрических параметров»
- 2. ГОСТ 22267-76 «Станки металлорежущие. Схемы и способы измерений геометрических параметров»
- 3. ГОСТ 8-82 «Станки металлорежущие. Общие требования к испытаниям на точность»
- 4. ГОСТ 18097-93 «Станки токарно-винторезные и токарные. Основные размеры. Нормы точности».
- 5. РД 24.022.09-87 «Отраслевая система технологической подготовки производства. Правила проверки оборудования на технологическую точность»

СОДЕРЖАНИЕ ЗАДАНИЯ

Содержание конкурсного задания включает следующие испытания токарных станков:

- **А) статические** связанные с измерениями прямолинейности оси токарного станка и прямолинейности хода отдельных узлов, а именно:
- 1. Проверка оси токарного станка (соосность вращения патрона относительно задней бабки)
- 2. Проверка прямолинейности хода пиноли в задней бабке
- 3. Проверка прямолинейности хода задней бабки по направляющим станины
- 4. Проверка прямолинейности хода суппорта по направляющим станины
- **Б)** динамические измерение вибрации в контрольных точках на станине:
- 1. Контроль вибрации рамы станины для анализа жесткости конструкции и выполнения требований по надлежащему монтажу
- 2. Контроль вибрации на шпиндельном узле для оценки его качественных параметров

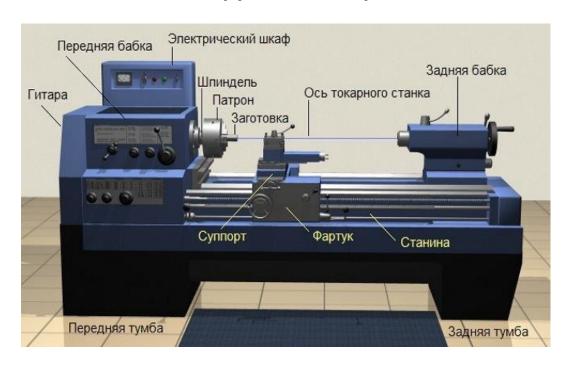
ИЗМЕРИТЕЛЬНОЕ ОБОРУДОВАНИЕ

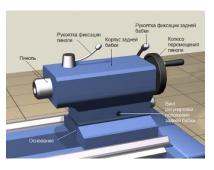
Магнитная стойка с цифровым индикатором

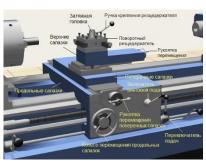
Беспроводной трехосевой датчик вибрации стационарного типа с температурным каналом

VIBROLASER PRO

Лазерная система центровки с GEO-функциями


VIBRO-SCANNER


Беспроводной трехосевой виброанализатор с температурным каналом

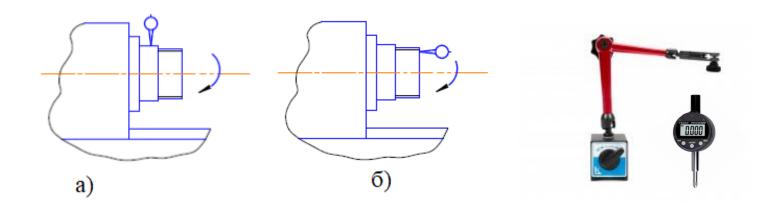


1. ОЗНАКОМЛЕНИЕ С КОНСТРУКЦИЕЙ

Ознакомление с конструкцией токарного станка

1.1. Входе ознакомления с конструкцией токарного станка заполнить таблицу:

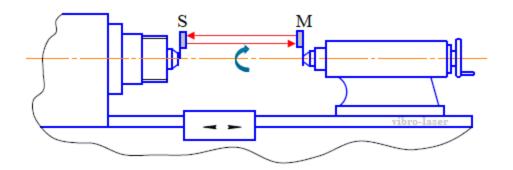
№ п/п	Направление измерения	Величина, мм
1.	Максимальный ход пиноли	
2.	Максимальный ход задней бабки	
3.	Максимальных ход суппорта	


1.2. Записать видимые замечания (осмотр заземления, защитных щитков и исправности ограждения и кожухов)

2. СТАТИЧЕСКИЕ ИСПЫТАНИЯ (1)

2.1. Проверка оси токарного станка

При проверке устанавливают индикатор часового типа так, чтобы его мерительный штифт касался поверхности шейки вращающегося шпинделя и был перпендикулярен к образующей.

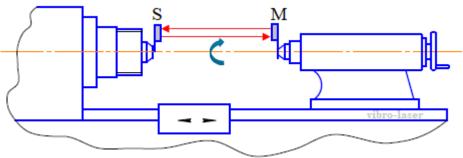

Внести данные в таблицу:

№ п/п	Направление измерения	Величина, мм
1.	Радиальное биение	
2.	Осевое биение	

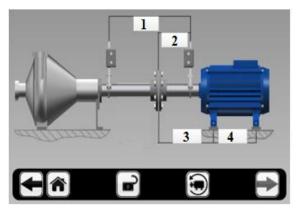
2. СТАТИЧЕСКИЕ ИСПЫТАНИЯ (2)

2.2. Проверка соосности вращения патрона относительно задней бабки

Настраиваем измерительные головки (луч):


- 1. в ближнем положении (механически)
- 2. в дальнем положении (винтом регулировки)

2. СТАТИЧЕСКИЕ ИСПЫТАНИЯ (2)


2.2. Проверка соосности вращения патрона относительно задней бабки

Для замеров используется программа горизонтальной центровки

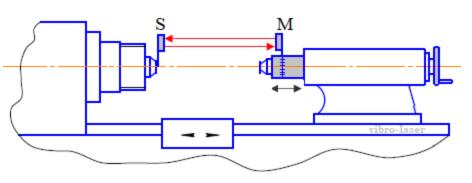
По аналогии с центровкой муфтовых соединений

Ввод размеров:

1 – тах после перемещения задней бабки

2 – половина от размера (1)

3 = 1 MM


4 = 1 MM

2. СТАТИЧЕСКИЕ ИСПЫТАНИЯ (3)

2.3. Проверка прямолинейности хода пиноли в задней бабке

Для замеров используется программа прямолинейности:

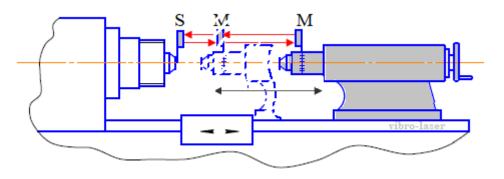
Настраивается положение лазерных лучей в ближней и дальней точке замера. В программу вводятся расстояния между контрольными точками. Перемещая пиноль по ходу движения в каждой контрольной точке проводятся измерения. В результате получится 3-х мерное представление прямолинейности хода пиноли. Процедура замеров повторяется дважды для контроля повторяемости результатов. После проведения измерения сохраняется отчет в pdf-формате на устройстве VIBRO-LASER Pro

Масштабируемый 3-D отчет с возможностью выбора ракурса данных



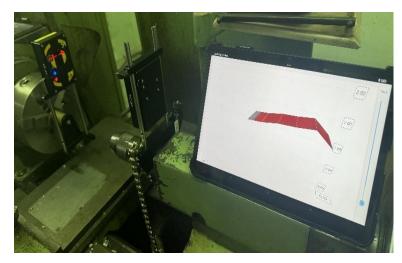
2. СТАТИЧЕСКИЕ ИСПЫТАНИЯ (3)

Какие могут быть ошибки


Причина ошибок

2. СТАТИЧЕСКИЕ ИСПЫТАНИЯ (4)

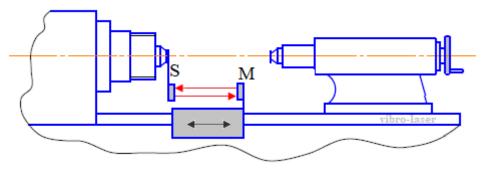
2.4. Проверка прямолинейности хода задней бабки по направляющим станины

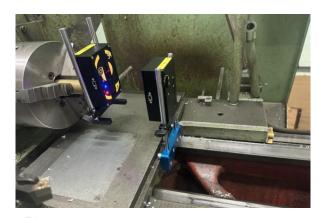


Для замеров используется программа прямолинейности:

Настраивается положение лазерных лучей в ближней и дальней точке замера. В программу вводятся расстояния между контрольными точками. Перемещая заднюю бабку по ходу движения в каждой контрольной точке проводятся измерения.

Масштабируемый 3-D отчет с возможностью выбора ракурса данных


2. СТАТИЧЕСКИЕ ИСПЫТАНИЯ (4)


2. СТАТИЧЕСКИЕ ИСПЫТАНИЯ (5)

2.5. Проверка прямолинейности хода суппорта по направляющим станины

Для замеров используется программа прямолинейности:

Процедура по аналогии.

Настраивается положение лазерных лучей в ближней и дальней точке замера. В программу вводятся расстояния между контрольными точками.

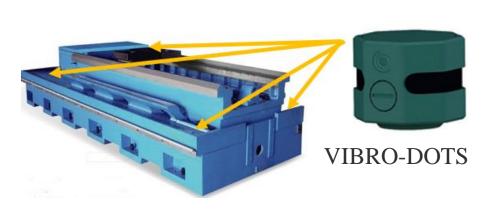
3. ДИНАМИЧЕСКИЕ ИСПЫТАНИЯ (1)

Измерение вибрации в контрольных точках на станине. Оценка величины и направления вибрационных нагрузок.

Допустимый уровень вибрации при работе металлообрабатывающего оборудования оценивается по ПОТ PO-14000-002-98 «Положение. Обеспечение безопасности производственного оборудования»

Примечание: Разработка ГОСТ по оценке вибрационного состояния токарных станков внесена в ПНС-2025 Росстандарт ТК-183 «Вибрация и удар». Финал ВЧД-2025 будет нормироваться иначе.

3.1. Контроль вибрации рамы станины для анализа жесткости конструкции и выполнения требований по надлежащему монтажу


3. ДИНАМИЧЕСКИЕ ИСПЫТАНИЯ (1)

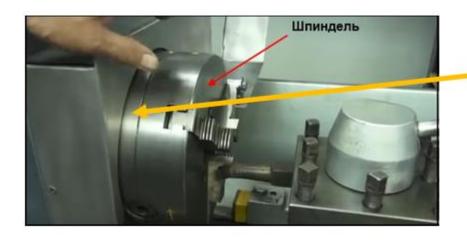
Измерение вибрации в контрольных точках на станине. Оценка величины и направления вибрационных нагрузок.

Допустимый уровень вибрации при работе металлообрабатывающего оборудования оценивается по ПОТ PO-14000-002-98 «Положение. Обеспечение безопасности производственного оборудования»

Примечание: Разработка ГОСТ по оценке вибрационного состояния токарных станков внесена в ПНС-2025 Росстандарт ТК-183 «Вибрация и удар». Финал ВЧД-2025 будет нормироваться иначе.

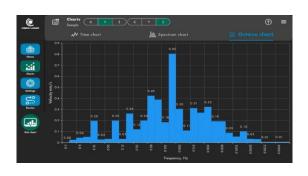
3.1. Контроль вибрации рамы станины для анализа жесткости конструкции и выполнения требований по надлежащему монтажу

Установить датчики, выполнить замер вибрации, сделать выводы, сохранить данные



3. ДИНАМИЧЕСКИЕ ИСПЫТАНИЯ (2)

3.2. Контроль вибрации на шпиндельном узле для оценки его качественных параметров


Беспроводной трехосевой виброанализатор VIBRO-SCANNER устанавливается на невращающуюся часть шпинделя токарного станка.

VIBRO-SCANNER автоматически определяет дефекты динамики шпинделя, а также анализирует вибрацию по трем осям (XYZ).

Установить датчики, выполнить замер вибрации, сделать выводы, сохранить данные

СПАСИБО ЗА ВАШЕ ВНИМАНИЕ!

СПАСИБО ЗА ВНИМАНИЕ!

КОНТАКТЫ

УЧЕБНЫЙ ЦЕНТР «ВИБРО-ЛАЗЕР»

ООО УЦПК «ВИБРО-ЛАЗЕР» г.Санкт-Петербург, ул. Шпалерная, 22

- 8 (812) 900-50-51
- edu@vibro-laser.com

- www.vk.com/vibrolaser
- www.vibrolaser-edu.pro

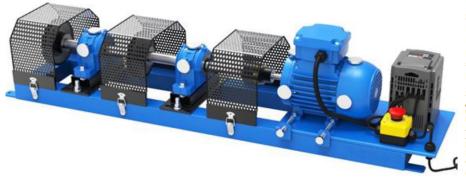


Сегодня VIBRO-LASER используется во всех отраслях промышленности!

УЧЕБНОЕ ОБОРУДОВАНИЕ и СТЕНДЫ

ЕВРАЗИЙСКИЙ ЭКОНОМИЧЕСКИЙ СОЮЗ ДЕКЛАРАЦИЯ О СООТВЕТСТВИИ

Заявитель: ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ УЧЕБНЫЙ ЦЕНТР ПОВЫШЕНИЯ КВАЛИФИКАЦИИ "ВИБРО-ЛАЗЕР", Место нахождения: 191123, Россия, Г.Санкт-Петербург, муниципальный округ Литейный округ вн. тер. г., ул Шпалерная, Д. 22, литера а , помещ. 9-Н ком. офис 5, ОГРН: 1247800046482, Номер телефона: +7 8129005051, Адрес электронной почты: edu@vibro-laser.com

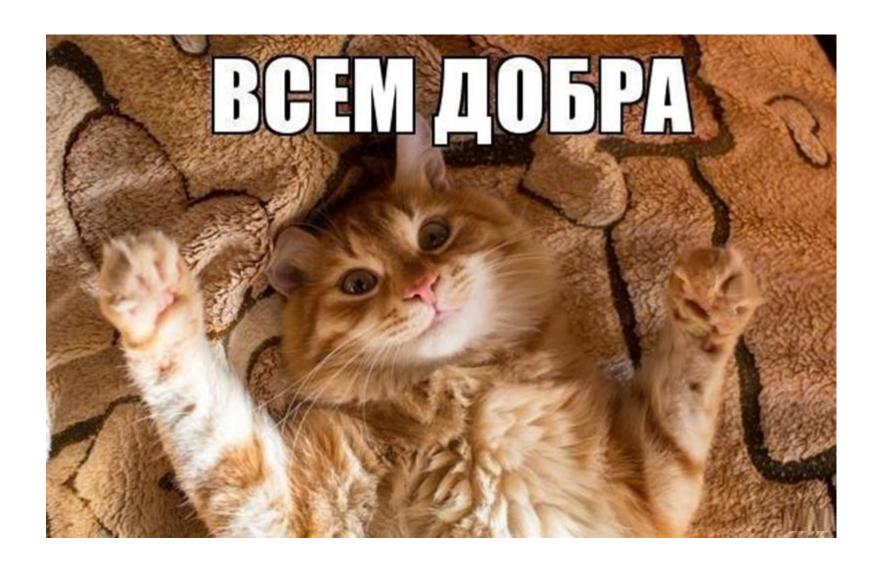

В лице: Генеральный директор Севастьянов Владимир Владимирович

ЗАЯВЛЯЕТ, ЧТО Тренировочный стенд. Модель: VL-EDU-01., Тренировочный стенд. Модель: VL-EDU-01., описание продукции: Декларация соответствия распространяется на продукцию, изготовленную с даты изготовления отобранных образцов (проб) изготовления, образцов (проб) изготовления отобранных образцов (проб) изготовитель: ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ УЧЕБНЫЙ ЦЕНТР ПОВЫШЕНИЯ КВАЛИФИКАЦИИ "ВИБРО-ЛАЗЕР", Место нахождения: 191123, Россия, Г.Санкт-Петербург, муниципальный округ Питейный округ вн. тер. г., ул Шпалерная, Д. 22, литера а, помещ. 9-H ком. офис 5, Адрес места осуществления деятельности по продукции: 191123, Россия, Г.Санкт-Петербург, муниципальный округ Литейный округ Литейный округ Вн. тер. г., ул Шпалерная, Д. 22, литера а, помещ. 9-H ком. офис 5 Коды ТН ВЭД ЕАЭС: 9023008000

Соответствует требованиям ТР ТС 004/2011 О безопасности низковольтного оборудования; ТР ТС 020/2011 Электромагнитная совместимость технических средств

Декларация о соответствии принята на основании протокола ЭС/07.2024 – 0024 выдан 09.07.2024 испытательной лабораторией "Испытательная лаборатория ООО «ЭЛЕКТРОСЕТИ И СИСТЕМЫ», аттестат аккредитации РОСС RU.31881.04TECO.ИЛ16"; Схема декларирования: 1д; Дополнительная информация

Декларация о соответствии действительна с даты регистрации по 08.07.2029 включительно


Тренировочный стенд VL-EDU-01

ПОСТАВКА, ГАРАНТИЯ, СЕРВИСНОЕ ОБСЛУЖИВАНИЕ

до новых встреч!

